Mini-Lecture 4.1

Linear Functions and Their Properties

Learning Objectives:

1. Graph linear functions
2. Use average rate of change to identify linear functions
3. Determine whether a linear function is increasing, decreasing, or constant
4. Build linear models from verbal description

Examples:

1. For each function, (i) determine the slope and y-intercept; (ii) graph the function using slope and y-intercept; (iii) determine the average rate of change; and (iv) determine whether the function is increasing, decreasing, or constant.
(a) $f(x)=3 x+5$.
(b) $f(x)=-4 x+2$.
(c) $f(x)=5$.
2. Suppose $f(x)=3 x+6$ and $g(x)=-x+4$.
(a) Solve $f(x)=0$.
(b) Solve $f(x) \geq 0$.
(c) Solve $f(x)=g(x)$.
(d) Solve $f(x) \leq g(x)$.
3. The cost, C, in dollars of a cellular phone plan is given by the function $C(x)=0.30 x+7$, where x is the number of minutes used.
(a) What is the cost of the plan if you talk for 150 minutes?
(b) If the bill is $\$ 220$, how many minutes were used?
(c) What is the maximum number of minutes that can be used for $\$ 120$?

Teaching Notes:

- The delta notation may take them a bit to understand.
- The applications are not difficult and should be interesting.

Answers: (Graphs are below.)

1. (a) (i) Slope $=3, y$-intercept $=5$; (iii) 3; (iv) increasing.
(b) (i) Slope $=-4, y$-intercept $=2$; (iii) -4; (iv) decreasing.
(c) (i) Slope $=0, y$-intercept $=5$; (iii) 0 ; (iv) constant.
2. (a) $x=-2$
(b) $(-2, \infty)$
(c) $x=-\frac{1}{2}$
(d) $\left(-\infty,-\frac{1}{2}\right]$
3. (a) $\$ 52$ (b) 710 (c) 376

1 .

Mini-Lecture 4.2

Linear Models: Building Linear Functions from Data

Learning Objectives:

1. Draw and interpret scatter diagrams
2. Distinguish between linear and nonlinear relations
3. Use a graphing utility to find the line of best fit

Examples:

1. Examine the scatter diagram and determine whether the relation is linear or nonlinear.
(a)

(b)

2. For the data below, draw a scatter diagram. Select two points from the diagram, and find the equation of the line containing the two points selected. Graph the line found on the scatter diagram.

x	-2	-1	0	1	2	3
y	-8	-4	-2	2	5	7

Answers:

1. (a) linear (b) nonlinear
2. $y=3 x-2$

Mini-Lecture 4.3

Properties of Quadratic Functions

Learning Objectives:

1. Graph a quadratic function using transformations
2. Identify the vertex and axis of symmetry of a quadratic function
3. Graph a quadratic function using its vertex, axis, and intercepts
4. Find a quadratic function given its vertex and one other point
5. Find the maximum or minimum value of a quadratic function

Examples:

1. Graph each function by using transformations on the function $f(x)=x^{2}$.
(a) $f(x)=2(x-2)^{2}-2$
(b) $f(x)=-3(x+1)^{2}+3$
2. Find the vertex, axis of symmetry, and intercepts, then graph the function. State the domain and range, where the function is increasing, and where it is decreasing.

$$
\text { (a) } f(x)=2 x^{2}-3 x-2 \quad \text { (b) } f(x)=-x^{2}-4 x
$$

3. Find the quadratic function whose vertex is at $(2,5)$ and passes through $(3,2)$.
4. Determine the value of the maximum or the minimum without graphing.
(a) $f(x)=3 x^{2}-24 x+53$
(b) $f(x)=-2 x^{2}-12 x-24$

Teaching Notes:

- Initially, you may get confused with horizontal transformations, but vertical transformations don't cause too much difficulty.
- It is important that you learn to put the function in the form $f(x)=a(x-h)^{2}+k$ in order to identify the vertex and to graph the function. It is also a good idea to use this form to find any x-intercepts by solving $a(x-h)^{2}+k=0$, especially when the function does not factor.
- It is important that you use the form $f(x)=a x^{2}+b x+c$ to find the y-intercept. Otherwise they will think that the k value is the y-intercept.
- You may often state the vertex as the maximum or minimum instead of the y value. Emphasize that the maximum or minimum is a value, not a coordinate.

Answers: 1.(a) Move 2 right, down 2, stretch of 2

(b) Reflect, 1 left, up 3, stretch of 3

2. (a) Vertex $=(3 / 4,-25 / 8)$; Axis of symmetry: $x=3 / 4 ; x$-intercepts $-1 / 2,2 ; y$-intercept $=-2$ Domain $=(-\infty, \infty)$, Range $=[-25 / 8, \infty)$, Decreasing $(-\infty, 3 / 4)$, Increasing $(3 / 4, \infty)$
(b) Vertex $=(-2,4)$; Axis of symmetry: $x=-2$; x-intercepts $-4,0 ; y$-intercept $=0$ Domain $=(-\infty, \infty)$, Range $=(-\infty, 4]$, Increasing $(-\infty,-2)$, Decreasing $(-2, \infty)$
(a)

(b)

3. $f(x)=-3(x-2)^{2}+5$
4. (a) Minimum is 5
(b) Maximum is -6

Mini-Lecture 4.4
 Build Quadratic Models from Verbal Descriptions and Data

Learning Objectives:

1. Build quadratic models from verbal descriptions
2. Build quadratic models from data

Examples:

1. An object is propelled straight upward from a height of 6 feet with an initial velocity of 32 feet per second. The height at any time t is given by $s(t)=-16 t^{2}+32 t+6$ where $s(t)$ is measured in feet and t in seconds. Find the maximum height attained by the object.
2. A rancher has 200 feet of fencing to enclose two adjacent rectangular corrals. What dimensions will produce a maximum enclosed area?
3. The revenue function for a new plasma television is given by $R(p)=900 p-0.1 p^{2}$. What price, p, should be charged to maximize revenue? What is the maximum revenue?

Answers:

1. 22 feet
2. $50 \mathrm{ft} \times 33 \frac{1}{3} \mathrm{ft}$
3. \$4500; \$2,025,000

Mini-Lecture 4.5
 Inequalities Involving Quadratic Functions

Learning Objectives:

1. Solve inequalities involving a quadratic function

Examples:

1. Solve each inequality.
(a) $x^{2}-x-12 \leq 0$
(b) $-2 x^{2}>-11 x+15$
(c) $3 x^{2}+6 x>45$

Teaching Notes:

- A problem that you may have with inequalities is the notation. Make sure you understand how to properly express the answer in interval notation.

Answers:

1. (a) $[-3,4]$
(b) $\left(\frac{5}{2}, 3\right)$
(c) $(-\infty,-5) \cup(3, \infty)$
