Mini-Lecture 5.1

Polynomial Functions and Models

Learning Objectives:

1. Identify polynomial functions and their degree
2. Graph polynomial functions using transformations
3. Identify the real zeros of a polynomial function and their multiplicity
4. Analyze the graph of a polynomial function
5. Build cubic models from data

Examples:

1. Determine which functions are polynomials and state the degree. If not, state why.
(a) $f(x)=5 x^{3}-3 x+4$
(b) $f(x)=\sqrt{3} x^{2}$
(c) $f(x)=\frac{3+x}{x-3}$
(d) $f(x)=\sqrt{x-3}$
2. Form a polynomial whose degree and zeros are given. Don't expand.
(a) Degree 3; zeros: -2,0,4
(b) Degree 4; zeros: -2, multiplicity 3; 1, multiplicity 1
3. Find a polynomial function that could form the graph shown below.

4. Use transformations of $y=x^{4}$ or $y=x^{5}$ to graph each function.
(a) $f(x)=(x+3)^{5}$
(b) $f(x)=x^{5}+3$
(c) $f(x)=(x-1)^{4}-2$
5. Sketch the graph of each function by using end-behavior and multiplicity of zeros.
(a) $f(x)=x^{3}(x-1)(x+3)$
(b) $f(x)=(x+2)^{2}(x-2)(x+4)$

Teaching Notes:

- It is essential to understand what constitutes a polynomial function.
- Understand the behavior of the functions at their zeros and the end behavior
- Giving students a generic graph using a,b,c instead of numerical values can be helpful in getting them to master the concepts.

Answers:

1. (a) Polynomial, degree 3 (b) Polynomial, degree 2 (c) Not a polynomial because the variable is in the denominator (d) Not a polynomial because of the radical
2. (a) $f(x)=x(x+2)(x-4)$
(b) $f(x)=(x+2)^{3}(x-1)$
3. $f(x)=x(x+2)(x-3)^{2}$
4. (a)

(b)

(c)

5.

(a)

(b)

Mini-Lecture 5.2

Properties of Rational Functions

Learning Objectives:

1. Find the domain of a rational function
2. Find the vertical asymptotes of a rational function
3. Find the horizontal or oblique asymptotes of a rational function

Examples:

1. Find the domain of each rational function.
(a) $f(x)=\frac{2-x}{x+2}$
(b) $f(x)=\frac{3 x^{2}}{x^{2}-9}$
(c) $f(x)=\frac{x-1}{x^{2}+1}$
(d) $f(x)=\frac{x}{x^{2}-4 x-5}$
2. Identify vertical asymptotes, horizontal asymptotes, and oblique asymptotes.
(a) $f(x)=\frac{4 x+1}{3-x}$
(b) $f(x)=\frac{2 x^{3}+3 x}{x^{2}-1}$
(c) $f(x)=\frac{x^{4}+1}{x^{2}-9}$
(d) $f(x)=\frac{2 x}{x^{2}+1}$
3. Graph each function.
(a) $f(x)=\frac{1}{x}-2$
(b) $f(x)=\frac{2}{(x-2)^{2}}+1$

Teaching Notes:

- You may often remove from the domain values of x that make the numerator 0 .

For example, for $f(x)=\frac{x-3}{x^{2}-4}$, you will erroneously state the domain as $\{x \mid x \neq-2, x \neq 2, x \neq 3\}$.

- Analyzing the function to determine asymptotes so that you can learn to determine asymptotes quickly.

Answers:

1. $(a)\{x \mid x \neq-2\}$
(b) $\{x \mid x \neq-3, x \neq 3\}$
(c) All Real Numbers
(d) $\{x \mid x \neq-1, x \neq 5\}$
2.

(a) V.A. $x=3$, H.A. $y=-4$
(b) Oblique $y=2 x$, V.A. $x=1, x=-1$
(c) V.A. $x=3, x=-3$
(d) H.A. $y=0$
3. (a)

(b)

Mini-Lecture 5.3
 The Graph of a Rational Function

Learning Objectives:

1. Analyze the graph of a rational function
2. Solve applied problems involving rational functions

Examples:

1. Analyze the graph of $f(x)=\frac{2 x}{x^{2}-9}$ with the 7 -step process used in Example 2.
2. A company that produces snowmobiles has a cost function, $C(x)=3500 x+150,000$.
(a) Find the average cost function. (b) What is the average cost of producing 100 snowmobiles?

Teaching Notes:

- You may usually do not enjoy application problems, but these problems have a lot of interesting applications.
- If you have a graphing calculator, try to do the graphs and use the calculator to check their work. You may need to grasp the concepts without too much dependency on a graphing calculator..
- Analyzing the functions without looking at the graph. Look at the graphs after the analysis is done, to check your work.

Answers:

1. Step 1: Domain is $\{x \mid x \neq 3, x \neq-3\}, f(0)=0$.

Step 2: Reduced

Step 3: VA are $x=3$ and $x=-3$
Step 4: HA is $y=0$, intersects at the point $(0,0)$
Step 5: On the interval $(-\infty,-3)$, the function is below
 the x-axis.

On the interval $(-3,0)$, the function is above the x-axis.
On the interval $(0,3)$, the function is below the x-axis.
On the interval $(3, \infty)$, the function is above the x-axis.
Step 6: As $x \rightarrow-\infty, f(x) \rightarrow 0 ; x \rightarrow-3^{-}, f(x) \rightarrow-\infty ; x \rightarrow-3^{+}, f(x) \rightarrow \infty$

$$
x \rightarrow \infty, f(x) \rightarrow 0 ; x \rightarrow 3^{-}, f(x) \rightarrow-\infty ; x \rightarrow 3^{+}, f(x) \rightarrow \infty
$$

2. (a) $\bar{C}(x)=3500+\frac{150,000}{x} \quad$ (b) $\$ 5000$

Mini-Lecture 5.4
Polynomial and Rational Inequalities

Learning Objectives:

1. Solve polynomial inequalities
2. Solve rational inequalities

Examples:

1. Solve each polynomial inequality.
(a) $(x+3)^{2}(x-4)>0$
(b) $(x+1)(x-5)(x+3) \leq 0$
(c) $x^{6}>16 x^{4}$
(d) $x^{3}+2 x^{2}-8 x \leq 0$
2. Solve each rational inequality.
(a) $\frac{(x+3)^{2}}{x^{2}-4} \geq 0$
(b) $\frac{2 x-1}{x+4} \leq 2$
(c) $\frac{x^{2}(x+3)(x-5)}{(x+2)(x-4)} \geq 0$
(d) $\frac{2}{x-1}>\frac{3}{x+2}$

Teaching Notes:

- A sign chart can also be helpful in solving these inequalities.
- Using test numbers can be difficult if the roots are close together. You may not always calculate correctly.
- If using a graphing calculator in class, then this is a good section to use that technology in the presentation. Graphic representation gives you a clearer idea. The Table feature is a great way to calculate test values.

Answers:

1. $(a)(4, \infty)$
(b) $(-\infty,-3] \cup[-1,5]$
(c) $(-\infty,-4) \cup(4, \infty)$
(d) $(-\infty,-4] \cup[0,2]$
2. $($ a $)(-\infty,-2) \cup(2, \infty)$
(b) $(-4, \infty)$
(c) $(-\infty,-3] \cup(-2,4) \cup[5, \infty)$
$(d)(-\infty,-2) \cup(1,7)$

Mini-Lecture 5.5

The Real Zeros of a Polynomial Function

Learning Objectives:

1. Use the Remainder and Factor Theorems
2. Use the Rational Zeros Theorem to list the potential rational zeros of a polynomial function
3. Find the real zeros of a polynomial function
4. Solve polynomial equations
5. Use the Theorem for Bounds on Zeros
6. Use the Intermediate Value Theorem

Examples:

1. Find the remainder if $f(x)=x^{4}-3 x^{3}+2 x-4$ is divided by (a) $x-5 \quad(b) x+4$
2. Use the Remainder Theorem to determine whether the function $f(x)=3 x^{4}-6 x^{3}-11 x^{2}+4 x+6$ has the factor $(a)(x-3) \quad(b)(x+2)$.
3. Discuss the real zeros of $f(x)=5 x^{5}-3 x^{4}+2 x^{3}+x^{2}-2 x-5$.
4. For the function $f(x)=2 x^{4}+5 x^{3}+x^{2}+10 x-6$, (a) list the potential rational zeros, (b) find the rational zeros.
5. Solve the equation $x^{4}-2 x^{3}-8 x^{2}+10 x+15=0$.
6. Find a bound to the zeros of $f(x)=x^{5}-4 x^{4}+2 x^{3}-5 x+2$.
7. Show that $f(x)=x^{4}+x^{3}-9 x^{2}-3 x+18$ has a root between -2 and -1 .

Teaching Notes:

- This is a very important section for any student that will be taking a calculus course. Make sure you understand the Division Algorithm for Polynomials since this will form the basis for this section.
- Using a graphing calculator can speed up the process for the Rational Zeros Theorem.
- The Intermediate Value Theorem, as this is very important in calculus.

Answers:

1. (a) 256 (b) 436 2. (a) yes $\begin{array}{lll}\text { (b) no } & \text { 3. Three or one positive real zeros. Two or }\end{array}$ none negative real zeros.
2. (a) $\frac{p}{q}: \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$
(b) $\frac{1}{2},-3$
3. $x=3,-1, \pm \sqrt{5}$
4. -6 and 6
5. $f(-1)=12>0, f(-2)=-4<0$

Mini-Lecture 5.6

Complex Zeros; Fundamental Theorem of Algebra

Learning Objectives:

1. Use the Conjugate Pairs Theorem
2. Find a polynomial function with specified zeros
3. Find the complex zeros of a polynomial function

Examples:

1. Find the remaining two zeros of a polynomial of degree 6 whose coefficients are real numbers and has the zeros $2,-3,2 i$, and $1-2 i$.
2. Find a polynomial of degree 5 whose coefficients are real that has the zeros $0,-2 i$, and $2+i$.
3. Find the complex zeros of the polynomial function $f(x)=2 x^{4}-5 x^{3}-x^{2}-5 x-3$

Teaching Notes:

- This section brings all of the theorems learned about zeros together.
- See how the previous sections have pointed to this. Get them to see the "big picture", so to speak.
- A graphing calculator can really help to see the behavior of the polynomial.
- See how the graph of $4^{\text {th }}$ degree polynomial with only two real zeros, but there are 4 roots. This is a way to see the introduction of the complex zeros easy to be seen. A simple example is $x^{4}-16$.

Answers:

1. $-2 i, 1+2 i$
2. $f(x)=a\left(x^{5}-2 x^{4}+9 x^{3}-8 x^{2}+20 x\right)$
3. $i,-i, 3,-\frac{1}{2}$
