## Mini-Lecture 7.2

The Parabola

## Learning Objectives:

1. Analyze parabolas with vertex at the origin
2. Analyze parabola with vertex at $(h, k)$
3. Solve applied problems involving parabolas

## Examples:

1. Find the equation of the parabola described. Find the two points that define the latus rectum.
(a) Focus at $(7,0)$, vertex at $(0,0)$
(b) Focus at $(0,-1)$, directrix the line $y=1$.
(c) Directrix $x=-\frac{1}{7}$, vertex at $(0,0)$
(d) Vertex at $(0,0)$, axis of symmetry the $y$-axis, contains the point $(5,3)$
2. Find the vertex, focus, and directrix of each parabola.
(a) $y^{2}=4 x$
(b) $(x-5)^{2}=-(y+1)$
(c) $(y-3)^{2}=12(x+1)$
(d) $y^{2}-10 y+4 x+25=0$
3. A searchlight is shaped like a paraboloid of revolution. If the light source is located 2 feet from the base along the axis of symmetry and the opening is 10 feet across, how deep should the searchlight be?

## Teaching Notes:

- There are numerous applications for the parabola. These should be emphasized.
- Take the time to go over all the terminology.
- There are numerous web sites that have applets demonstrating the properties.
- See the importance of learning the information in Table 1 and Table 2.


## Answers:

1. $\left(\right.$ a) $y^{2}=28 x ;(7,14),(7,-14)$
(b) $x^{2}=-4 y ;(2,-1),(-2,-1)$
(c) $y^{2}=\frac{4}{7} x ;\left(\frac{1}{7}, \frac{2}{7}\right),\left(\frac{1}{7},-\frac{2}{7}\right)$
(d) $x^{2}=\frac{25}{3} y ;\left(-\frac{25}{6}, \frac{25}{12}\right),\left(\frac{25}{6}, \frac{25}{12}\right)$
2. (a) $V=(0,0) F=(1,0) x=-1$
(b) $V=(5,-1) \quad F\left(5,-\frac{5}{4}\right) y=-\frac{3}{4}$
(c) $V=(-1,3) F=(2,3) x=-4$
$(d) V=(0,5) \quad F(-1,5) \quad x=1$
3. $25 / 8$

## Mini-Lecture 7.3

The Ellipse

## Learning Objectives:

1. Analyze ellipses with center at the origin
2. Analyze ellipses with center at $(h, k)$
3. Solve applied problems involving ellipses

## Examples:

1. Find the vertices and foci of each ellipse. (a) $\frac{x^{2}}{64}+\frac{y^{2}}{36}=1 \quad$ (b) $9 x^{2}+y^{2}=81$
2. Find an equation for each ellipse.
(a) Center $=(0,0)$, Focus at $(4,0)$, Vertex at $(5,0)$
(b) Foci at $(0,4)$ and $(0,-4)$, length of major axis is 14
3. Find the center, foci, and vertices of each ellipse.
(a) $\frac{(x-1)^{2}}{36}+\frac{(y+2)^{2}}{9}=1$
(b) $x^{2}-4 x+16 y^{2}+96 y+4=0$
4. Find an equation for each ellipse.
(a) Center $=(-3,1)$, Vertex at $(-3,10)$, Focus at $(-3,6)$
(b) Foci at $(-1,2),(-1,-4)$ and length of major axis is 14.
5. A hall 120 feet in length is to be designed as a whispering gallery. If the foci are located 35 feet from the center, how high is will the ceiling be at the center?

## Teaching Notes:

- See the importance of learning the information in Table 3.
- Spend time on applications since there are many. The Whispering Gallery in example 7 is a good one to go over.
- Kepler's Law of Planetary Motion is demonstrated on http://home.cvc.org/science/kepler.htm which is a great way to introduce ellipses.


## Answers:

1. (a) $V=( \pm 8,0), F=( \pm 2 \sqrt{7}, 0) \quad$ (b) $V=(0, \pm 9), F=(0, \pm 6 \sqrt{2})$
2. (a) $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
(b) $\frac{x^{2}}{33}+\frac{y^{2}}{49}=1$
3. (a) $C=(1,-2), V=(7,-2) \&(-5,-2), F=(1 \pm 3 \sqrt{3},-2)$
(b) $C=(2,-3), V=(14,-3) \&(-10,-3), F=(2 \pm 3 \sqrt{15},-3)$
4. (a) $\frac{(x+3)^{2}}{56}+\frac{(y-1)^{2}}{81}=1 \quad$ (b) $\frac{(x+1)^{2}}{40}+\frac{(y+1)^{2}}{49}=1$
5. 48.7 feet

## Mini-Lecture 7.4

The Hyperbola

## Learning Objectives:

1. Analyze hyperbolas with center at the origin
2. Find the asymptotes of a hyperbola
3. Analyze hyperbolas with center at $(h, k)$
4. Solve applied problems involving hyperbolas

## Examples:

1. Find an equation for the hyperbola described.
(a) Center $(0,0)$, focus $(0,8)$, vertex $(0,2)$
(b) Foci $(0, \pm 25)$, vertex $(0,24)$
(c) Foci $( \pm 6,0)$, asymptote $y=-x$
2. Find the center, transverse axis, vertices, foci, and asymptotes.
(a) $\frac{y^{2}}{81}-\frac{x^{2}}{16}=1$
(b) $9 x^{2}-y^{2}=81$
3. Find an equation for the hyperbola described.
(a) Center $(4,-2)$, focus $(9,-2)$, vertex $(6,-2)$
(b) Foci $(4,10)$ and $(10,10)$, vertex $(9,10)$
(c) Vertices $(-1,-1)$ and $(5,-1)$, asymptote $y+1=\frac{5}{3}(x-2)$
4. Find the center, transverse axis, vertices, foci, and asymptotes.
(a) $\frac{(y+4)^{2}}{36}-\frac{(x-3)^{2}}{4}=1$
(b) $x^{2}-y^{2}-4 x-10 y-25=0$

## Teaching Notes:

- Hyperbolas have many interesting applications that should be emphasized.
- See the importance of learning the information in Table 4.
- It is important to be accurate and clear when graphing. Use colors if possible.


## Answers:

1. (a) $\frac{y^{2}}{4}-\frac{x^{2}}{60}=1 \quad$ (b) $\frac{y^{2}}{576}-\frac{x^{2}}{49}=1 \quad$ (c) $\frac{x^{2}}{18}-\frac{y^{2}}{18}=1$
2. $(a)(0,0) ; y$-axis; $(0, \pm 9) ;(0, \pm \sqrt{97}) ; y= \pm \frac{9}{4} x \quad(b)(0,0) ; y$-axis; $( \pm 3,0) ;( \pm 3 \sqrt{10}, 0) ; y= \pm 3 x$
3. (a) $\frac{(x-4)^{2}}{4}-\frac{(y+2)^{2}}{21}=1$
(b) $\frac{(x-7)^{2}}{4}-\frac{(y-10)^{2}}{5}=1$
(c) $\frac{(x-2)^{2}}{9}-\frac{(y+1)^{2}}{25}=1$
4. $(a)(3,-4) ; y$-axis; $(3,-10) \&(3,2) ;(3,-4 \pm 2 \sqrt{10}) ; y+4= \pm 3(x-3)$
(b) $(2,-5) ; x$-axis; $(0,-5) \&(4,-5) ;(2 \pm 2 \sqrt{2},-5) ; y+5= \pm(x-2)$
