Mini-Lecture 9.1

Sequences

Learning Objectives:

1. Write the first several terms of a sequence
2. Write the terms of a sequence defined by a recursive formula
3. Use summation notation
4. Find the sum of a sequence

Examples:

1. Write down the first five terms of the sequence.
(a) $\left\{\frac{n}{n+9}\right\}$
(b) $\left\{\frac{3^{n}}{4^{n}+1}\right\}$
(c) $\left\{\frac{(-1)^{n}}{(n+3)(n+6)}\right\}$
2. Write down the nth term of the sequence suggested by the pattern $1, \frac{1}{6}, \frac{1}{36}, \frac{1}{216}, \cdots$
3. Write the first five terms of the sequence defined by the recursive formula.
(a) $a_{1}=1 ; a_{n}=4 a_{n-1}$
(b) $a_{1}=2 ; a_{n}=\frac{a_{n-1}}{n^{2}}$
(c) $a_{1}=-4 ; a_{n}=n-a_{n-1}$
4. Find the sum of the sequence.
(a) $\sum_{k=1}^{20} 3$
(b) $\sum_{k=1}^{5} 4 k+9$
(c) $\sum_{k=1}^{5}(-1)^{k} 4^{k}$
(d) $\sum_{k=1}^{5}\left(k^{3}+3\right)$

Teaching Notes:

- This will be totally new material for many students so it is important that sufficient time be spent establishing the terminology.
- Factorial notation is used in calculus, so stress this.

Answers:

1. (a) $\frac{1}{10}, \frac{2}{11}, \frac{1}{4}, \frac{4}{13}, \frac{5}{14}$
(b) $\frac{3}{5}, \frac{9}{17}, \frac{27}{65}, \frac{81}{257}, \frac{243}{1025}$
(c) $\frac{-1}{28}, \frac{1}{40}, \frac{-1}{54}, \frac{1}{70}, \frac{-1}{88}$
2. $\frac{1}{6^{n-1}}$
3. (a) $1,4,16,64,256$
(b) $2, \frac{1}{2}, \frac{1}{18}, \frac{1}{288}, \frac{1}{7200}$
(c) $-4,6,-3,7,-2$
4. (a) 60
(b) 105
(c) -820
(d) 240

Mini-Lecture 9.2

Arithmetic Sequences

Learning Objectives:

1. Determine if a sequence is arithmetic
2. Find a formula for an arithmetic sequence
3. Find the sum of an arithmetic sequence

Examples:

1. For each arithmetic sequence, find the common difference, and write out the first four terms. $\quad(a)\{2 n+8\} \quad(b)\left\{\ln 4^{n}\right\}$
2. Find the nth term of the arithmetic sequence, and then find the fifth term if the initial term is $a=5$ and the common difference is $d=8$.
3 . Find the indicated term for the given arithmetic sequence.
(a) $11^{\text {th }}$ term of $7,14,21, \ldots$
(b) $7^{\text {th }}$ term of $-2,-7,-12, \ldots$
3. Find the first term and the common difference for the arithmetic sequence described.

Give a recursive formula for the sequence.
(a) $5^{\text {th }}$ term is $4 ; 17^{\text {th }}$ term is 28
(b) $8^{\text {th }}$ term is $-4 ; 19^{\text {th }}$ term is 51
5. Find the sum. $-15+(-24)+(-33)+\ldots+(-6-9 n)$

Teaching Notes:

- Sequences are used in calculus, so it is important that you understand the terminology.
- This topic is a good opportunity to see the really interesting applications of mathematics.
- Stress that a sequence is a list of terms, not a sum.

Answers:

1. (a) Common difference $=2, \quad$ First 4 terms: 10, 12, 14, 16
(b) Common difference $=1.386$ First 4 terms: 1.386, 2.772, 2.158, 5.544
2. $a_{n}=5+(n-1)(8)$
3. $($ a $) a_{11}=77 \quad$ (b) $a_{7}=-32$
4. (a) First term is -4 . Common difference is 2. $a_{1}=-4 ; a_{n}=a_{n-1}+2$
(b) First term is -39 . Common difference is 5. $\quad a_{1}=-39 ; a_{n}=a_{n-1}+5$
5. $s_{n}=\frac{n}{2}(-21-9 n)$

Mini-Lecture 9.3

Geometric Sequences; Geometric Series

Learning Objectives:

1. Determine if a sequence is geometric
2. Find a formula for a geometric sequence
3. Find the sum of a geometric sequence
4. Determine whether a geometric series converges or diverges
5. Solve annuity problems

Examples:

1. Determine whether the given sequence is arithmetic (find the common difference), geometric (find the common ratio), or neither.
(a) $\{1,5,10,16, \ldots\} \quad$ (b) $\left\{\left(\frac{3}{5}\right)^{n}\right\}$
2. Find a formula for a geometric sequence with $a=-3$ and $r=2$.
3. Find the sum of the geometric sequence $\frac{1}{6}+\frac{5}{6}+\frac{5^{2}}{6}+\frac{5^{3}}{6}+\cdots+\frac{5^{n-1}}{6}$.
4. Find the sum of the geometric series $4-\frac{1}{4}+\frac{1}{64}-\frac{1}{1024}+\cdots$
5. Determine whether each infinite geometric series converges or diverges. Find the sum if it converges.
(a) $\sum_{k=1}^{\infty} 9\left(-\frac{1}{2}\right)^{k-1}$
(b) $\sum_{k=1}^{\infty} 2\left(\frac{5}{3}\right)^{k-1}$
(c) $\sum_{k=1}^{\infty} 3\left(\frac{4}{5}\right)^{k-1}$
6. Arnold contributes $\$ 200$ at the end of each quarter to a Tax Sheltered Annuity. What will the value of the TSA be after the $80^{\text {th }}$ deposit (20 years) if the per annum rate of return is assumed to be 9% compounded quarterly?

Teaching Notes:

- See the difference between a sequence and a series.
- Geometric sequences are used in many convergence tests.
- Sequences and series are used extensively in calculus so students need to understand these concepts.
- Sometimes students will have trouble determining the value of r when they are testing a geometric series for convergence. Tell them they can divide the $2^{\text {nd }}$ term by the first term and that will give them the value of r.

Answers:

1. (a) Neither (b) Geometric; common ratio is $3 / 5$.
2. $a_{n}=-3(2)^{n-1}$
3. $s_{n}=\frac{1}{24}\left(5^{n}-1\right)$
4. $\frac{64}{17}$
5. (a) 6
(b) Divergent
(c) 15
6. $\$ 43,823.5$

Mini-Lecture 9.4
 Mathematical Induction

Learning Objectives:

1. Prove statements using mathematical induction

Examples:

1. Use the principle of mathematical induction to show that the following statement is true for all natural numbers n.

$$
18+36+54+\ldots+18 n=9 n(n+1)
$$

Teaching Notes:

- See the usefulness of learning to think analytically.

Answers:

1. Show the statement holds true for $n=1$.

Assume the statement holds for some k, and determine w

Mini-Lecture 9.5

The Binomial Theorem

Learning Objectives:

1. Evaluate $\binom{n}{j}$
2. Use the Binomial Theorem

Examples:

1. Evaluate each expression.
(a) $\binom{9}{6}$
(b) $\binom{6}{3}$
(c) $\binom{62}{61}$
2. Expand the expression using the Binomial Theorem.
(a) $(x-3)^{6}$
(b) $(3 x+1)^{4}$
3. Use the Binomial Theorem to find the indicated coefficient or term.
(a) Coefficient of x^{5} in the expansion of $(x+2)^{9}$.
(b) Coefficient of x^{4} in the expansion of $(3 x+1)^{12}$.
(c) Third term in the expansion of $(x-3)^{7}$.
(d) Coefficient of x^{0} in the expansion of $\left(x^{2}-\frac{1}{x}\right)^{18}$.

Teaching Notes:

- This will be useful for any of you taking higher level calculus courses or any course using combinations.
- Show how to use Pascal’s Triangle.

Answers:

1. (a) 84
(b) 20
(c) 62
2. (a) $x^{6}-18 x^{5}+135 x^{4}-540 x^{3}+1215 x^{2}-1458 x+729$
(b) $81 x^{4}+108 x^{3}+54 x^{2}+12 x+1$
3. (a) 2016
(b) 40,095
(c) $189 x^{5}$
(d) 18564
