Abe Mirza

1. Solve the equation $14 y+26 y+5=39 y$
2. Solve the equation $3 n+14-22-12=6 n$
3. Solve the equation $\frac{2}{4} x+1=\frac{1}{4} x+6$
4. Solve the equation $6(4 x+1)=2(2 x+3)$
5. Solve the equation $-(6 k-5)+(-5 k+8)=-3$
6. Solve the inequality $2 x-5>-2 x+6$
7. Solve the inequality $8(t-3)<-4(t-3)$

Answers

$1 y=-5$
2. $x=-1$
3. $n=-20 / 3$
8. $y=6$
9. $k=16 / 11$
10. $x=-305$
4. $y=-2$
5. $x=20$
6. $x=-9 / 5$
7. $x=0$
11. $x>11 / 4$
12. $4<x<8$
13. $t<3$

Abe Mirza
Slope and Equation of a Line
Algebra
Given two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, The slope of the line that goes though these two points will be

$$
\text { Slope }=\boldsymbol{m}=\frac{\text { Change in } y}{\text { Change in } x}=\frac{\text { Rise }}{\text { Run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

If $\boldsymbol{m}>0$ line always goes from South West to North East
If $\boldsymbol{m}<0$ line always goes from North West to South East
If $\boldsymbol{m}=0$ line is always (Horizontal Line)
If $\boldsymbol{m}=$ undefined line is always (Vertical Line)
Example: Find the slope of the lines that through points $(-7,6)$ and $(4,5) \quad \boldsymbol{m}=\frac{5-6}{4-(-7)}=\frac{-1}{11}$
Practice: Find the slope of the lines through points $(-8,-6)$ and $(-4,15) \quad \boldsymbol{m}=$
Slope-Intercept Form: $y=m x+b \quad \boldsymbol{m}=$ Slope, $\quad b=y$-intercept
Note: If two lines have the same slope they will be parallel. $y=-8 x+12 \quad y=-8 x-5$
Vertical Lines: $x=a, \quad x=3, x=-4 \quad$ Horizontal Lines: $y=b, y=7, y=-2$
Finding x and y intercepts in an equation of line:
Finding \mathbf{x}-intercept, let $y=0$, solve for $\mathrm{x} \quad \Leftrightarrow \quad$ Finding \mathbf{y}-intercept, let $x=0$, solve for y
Example: Find x and y intercepts in equation $2 x-3 y=12$

Finding \mathbf{x}-intercept, let $y=0 \Rightarrow 2 x-3 y=12 \quad 2 x-0=12, \quad 2 x=12, \quad x=6$
Finding y-intercept, let $x=0 \Rightarrow 2 x-3 y=12 \quad 0-3 y=12, \quad-3 y=12, \quad y=-4$
Example: Find x and y intercepts in equation $y=-\frac{1}{2} x+5 \quad$ Ans: $x=10, \quad y=5$
Perpendicular lines: their slopes are negative reciprocal of each other $m_{1}=\frac{-1}{m_{2}}, \quad y=2 x+3, \quad y=\frac{-1}{2} x+3$

How to find the Equation of a line $y=m x+b$			
Case	Given	How	Example
1	$\begin{aligned} & \hline \boldsymbol{m}=\text { Slope, } \\ & b=y \text {-intercept } \end{aligned}$	Substitute them into equation	$\boldsymbol{m}=-2, b=y$-intercept $=3 \quad$ Substitute them into equation $y=-2 x+3$
2	$\begin{aligned} & \boldsymbol{m}=\text { Slope, and a } \\ & \text { point }=(x, y) \end{aligned}$	Substitute them into equation $y=m x+b$ and then solve for \mathbf{b}	Find the equation of the line that passes through point $(-8,6)$ and its slope $=\boldsymbol{m}=-2$ $6=-2(-8)+b, \quad 6=16+b, \quad b=-10$ Substitute them into equation $y=-2 x-10$
3	Passes though two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$	First find slope and then use $\left(x_{1}, y_{1}\right)$ like case 2	Find the equation of the line that passes through points $(-5,8)$ and $(5,18)$ $\begin{aligned} & \boldsymbol{m}=\frac{18-8}{5-(-5)}=\frac{10}{10}=1, y=m x+b \\ & 8=1(-5)+b, \Rightarrow 13=b \quad y=x+13 \end{aligned}$
4	$\begin{aligned} & \hline \boldsymbol{m}=0 \\ & \text { and passes though } \\ & \text { point }\left(x_{1}, y_{1}\right) \\ & \hline \end{aligned}$	Always a Horizontal Line: $y=0+b=y_{1}$	Find the equation of the line that passes through point $(-4,-6)$ and its slope $=\boldsymbol{m}=0$ $y=0+b=y_{1}=-6 \quad y=-6$
5	$\boldsymbol{m}=\text { undefined }=\frac{\text { Number }}{0}$ and passes though point $\left(x_{1}, y_{1}\right)$	Always a Vertical Line: $x=x_{1}$,	Find the equation of the line that passes through point $(3,7)$ and its slope $=\boldsymbol{m}=$ undefined A vertical line, so its equation is $x=3$
6	Passes though point $\left(x_{1}, y_{1}\right)$ and is parallel to a given line	The new slope $=\boldsymbol{m}$ of the parallel line and then do like case 2	Find the equation of the line that passes through point $(-4,7)$ and is parallel to its line $y=-2 x-10$ The line has slope of $=\boldsymbol{m}=-2$ $\begin{aligned} & 7=-2(-4)+b, \quad 1=8+b, \quad b=1 \\ & y=-2 x+1 \end{aligned}$
7	Passes though point $\left(x_{1}, y_{1}\right)$ and is perpendicular to a given line	The new slope will be the $m_{2}=-1 / m_{1}$ of the given equation, Having slope m_{2} and $\left(x_{1}, y_{1}\right)$ then do like case 2	Find the equation of the line that passes through point $(-4,7)$ and is parallel to its line $y=-2 x-10$ The line has slope of $=\boldsymbol{m}=-1 /-2=1 / 2=.5$ $7=.5(-4)+b, \quad 7=-2+b, \quad b=9 y=.5 x+9$

- Find the equation of a line that

P.1) passes through point $(0,1)$ and its slope $=\boldsymbol{m}=-1$
P.2) passes through point $(-9,4)$ and its slope $=\boldsymbol{m}=\frac{2}{3}$
P.3) passes through points $(3,5)$ and $(8,15)$
P.4) passes through points $(-1,-3)$ and $(2,-1)$

Ans: $y=-x+1$
Ans: $y=\frac{2}{3} x+10$
Ans: $y=2 x-1$
Ans: $y=\frac{2}{3} x-\frac{7}{3}$

